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Abstract 

  

 This thesis consists of two different research problems. In the first one, the heat 

transfer characteristic of wavy fin assembly with dehumidification is carried out.  In 

general, fin tube heat exchangers are employed in a wide variety of engineering 

applications, such as cooling coils for air conditioning, air pre-heaters in power plants 

and for heat dissipation from engine coolants in automobile radiators. In these heat 

exchangers, a heat transfer fluid such as water, oil, or refrigerant, flows through a parallel 

tube bank, while a second heat transfer fluid, such as air, is directed across the tubes. 

Since the principal resistance is much greater on the air side than on the tube side, 

enhanced surfaces in the form of wavy fins are used in air-cooled heat exchangers to 

improve the overall heat transfer performance. In heating, ventilation, and air 

conditioning systems (HVAC), the air stream is cooled and dehumidified as it passes 

through the cooling coils, circulating the refrigerant. Heat and mass transfer take place 

when the coil surface temperature in most cooling coils is below the dew point 

temperature of the air being cooled. This thesis presents a simplified analysis of 

combined heat and mass transfer in wavy-finned cooling coils by considering condensing 

water film resistance for a fully wet fin in dehumidifier coil operation during air 

condition. The effects of variation of the cold fluid temperature (-5˚C – 5˚C), air side 

temperature (25˚C – 35˚C), and relative humidity (50% – 70%) on the dimensionless 

temperature distribution and the augmentation factor are investigated and compared with 
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those under dry conditions. In addition, comparison of the wavy fin with straight radial or 

rectangular fin under the same conditions were investigated and the results show that the 

wavy fin has better heat dissipation because of the greater area. The results demonstrate 

that the overall fin efficiency is dependent on the relative humidity of the surrounding air 

and the total surface area of the fin. In addition, the findings of the present work are in 

good agreement with experimental data.  

The second problem investigated is the heat transfer analysis of confined liquid jet 

impingement on various surfaces. The objective of this computational study is to 

characterize the convective heat transfer of a confined liquid jet impinging on a curved 

surface of a solid body, while the body is being supplied with a uniform heat flux at its 

opposite flat surface. Both convex and concave configurations of the curved surface are 

investigated. The confinement plate has the same shape as the curved surface. 

Calculations were done for various solid materials, namely copper, aluminum, 

Constantan, and silicon; at two–dimensional jet. For this research, Reynolds numbers 

ranging from 750 to 2000 for various nozzle widths channel spacing, radii of curvature, 

and base thicknesses of the solid body, were used. Results are presented in terms of 

dimensionless solid–fluid interface temperature, heat transfer coefficient, and local and 

average Nusselt numbers. The increments of Reynolds numbers increase local Nusselt 

numbers over the entire solid–fluid interface. Decreasing the nozzle width, channel 

spacing, plate thickness or curved surface radius of curvature all enhanced the local 

Nusselt number. Results show that a convex surface is more effective compared to a flat 

or concave surface. Numerical simulation results are validated by comparing them with 

experimental data for flat and concave surfaces. 
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Chapter 1: Introduction and Literature Review 

 

1.1 Introduction (Heat Transfer in a Wavy Fin Assembly) 

In traditional refrigeration and air conditioning systems, finned tube heat 

exchangers are used to cool and dehumidify air. An air stream is cooled and dehumidified 

by the refrigerant that is circulating through the coil tube. The evaporation of the 

refrigerant within the coil removes heat from the air stream. The efficiency of the fin 

attached to the outer surface of the coil tube is directly related to the effectiveness of the 

heat exchanger. The cooling process occurs by the removal of sensible heat followed by 

condensation of water vapor contained within the air, as the moist air passes through the 

coil. Simultaneously, a condensation process entails heat transfer with phase change and 

the cooling takes place by the removal of sensible as well as latent heat. An important 

quantity that controls the heat transfer rate during a dehumidification process is the ratio 

of sensible to total heat transfer, which is mostly used in sizing cooling coils for air 

conditioning units.   

The current work is carried out through a one dimensional analysis and modeling 

of a wavy fin as used in a cooling coil (dehumidifier) of an air conditioner. The focus of 

the analysis is on the fully wet condition. Since, the coil surface temperature in most 

cooling coils is below the dew point temperature of the air being cooled, simultaneous 

heat and mass transfer takes place. Moisture condensation on the fin surface affects the 

overall fin efficiency. In an air conditioner, the cooling coils are used for the removal of 
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heat and moisture from the occupied space. Condensation of moist air bursts onto these 

cooling coils located within the air conditioning units. The metal fin attached to the tube 

improves the heat conduction. A number of physical parameters affect the thermal 

performance of the cooling coils such as geometry, material properties, psychrometric 

conditions, and the efficiency of the fin. The fin efficiency may be affected when moist 

air is condensed on the fin. This happens when the fin temperature is below that of the 

dew point temperature of the arriving air passing through the cooling coil. The 

improvement of the efficiency of the cooling coils directly contributes to the 

improvement of the performance of heating ventilation air conditioning system (HVAC), 

leading to big energy savings. The condensation process involves both heat and mass 

transfer; simultaneous cooling occurs by the removal of sensible as well as latent heat. 

An important quantity that used in the design and sizing of cooling coils for air 

conditioning units is the ratio of sensible to total heat transfer.   

 

1.2 Literature Review (Heat Transfer in a Wavy Fin Assembly)  

Lunardini and Aziz [1] presented a review of the analytical and experimental 

progress made in understanding the process of condensation on extended surfaces. They 

discussed the topic of dehumidification of air on finned cooling coils. Their review is 

focused on rectangular fins. They reviewed models based on classical fin theory for dry 

fin, introducing some modifications to take into account the effect of mass transfer. They 

concluded that although progress has been made in understanding condensation of 

cooling coils, more theoretical and experimental works are needed.  Experimental data 

for the overall performance of dry and fully wet cooling coils with dehumidification have 
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been reported by various investigators (Kays and London [2], Wang et al. [3], Leu et al. 

[4]). These studies confirmed that the performance of cooling finned coils is significantly 

reduced when condensation takes place. This is a consequence of lower fin efficiency for 

wet conditions. It was shown that fully wet fin efficiency was lower than that of dry fin. 

However, only a few theoretical works have been reported on condensation assuming 

fully wet fins or fin assemblies (Webb [5]). Kazeminejad [6] presented a simple model 

for simultaneous heat and mass transfer to a cooling and dehumidifying rectangular fin. 

He showed an analysis of rectangular one-dimensional fin assembly heat transfer with 

dehumidification under fully wet conditions, incorporating the ratio of sensible to total 

heat transfer. Salah El-Din [7] presented an analytical solution for the performance of 

partially-wet rectangular fin assembly. His model was useful in prediction of wet and dry 

parts of the fin assembly, besides the effect of the various parameters, including the 

assembly dimensions on the thermal performance. However, most dehumidifier cooling 

coils have annular fins in contrast to rectangular fins.  

Liang et al. [8] examined the efficiency of a plate-fin-tube heat exchanger using 

1-D and 2-D models. The 2-D model considered the complex fin geometry and the 

variation of the moist air properties over the fin. Rosario and Rahman [9] presented a one 

dimensional radial fin assembly model with condensation. Their findings indicated that 

the heat transfer rate increased in increments in both dry bulb temperature and relative 

humidity of the air. Rosario and Rahman [10] presented the 1-D analysis of heat transfer 

in a partially wet circular fin assembly during dehumidification. These models assumed 

that droplets can drain off the fin under the influence of the gravitational force neglecting 

the thermal resistance of the condensate. 
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Threlkeld [11] proposed a rectangular fin model assuming that the fin was 

covered with a uniform condensate film. He developed an analytical expression for the 

overall fin efficiency by using the enthalpy difference as the driving potential for 

simultaneous heat and mass transfer. He assumed a linear relationship between the 

ambient air temperature and the corresponding saturated air temperature. His model 

showed that the wet fin efficiency was only slightly affected by the air relative humidity. 

ARI Standard 410-81 [12] used an approach similar to Threlkeld [11], but neglecting the 

presence of the water film on the fin surface.  McQuiston [13] developed an expression 

for wet fin efficiency for the case of a plane fin by approximating the saturation curve on 

the psychrometric chart by a straight line over small range of temperatures. Coney et al. 

[14] presented a numerical solution for condensation over a rectangular fin, taking into 

account the thermal resistance of the condensate film and using a second-degree 

polynomial to relate the humidity ratio with dry bulb temperature.  He assumed a linear 

temperature profile for the condensate film. The results showed that there is negligible 

effect of condensate thermal resistance on the fin temperature distribution. Srinivasan and 

Shah [15] presented a summary of previous studies on condensation over rectangular 

fins. 

Elmahdy and Biggs [16] obtained the overall fin efficiency of a circular fin by 

taking into consideration the temperature distribution over the fin surface. Their work 

treated heat transfer and mass transfer separately by considering their respective driving 

force and then assumed a linear relationship between the humidity ratio of the saturated 

air on the fin surface and its temperature. Their numerical results indicate that the fin 

efficiency strongly depends on the relative humidity. As the relative humidity of air 
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increases, the driving potential for mass transfer increases; this leads to a higher latent 

heat transfer and higher temperature. McQuiston and Parker [17] presented an analysis of 

circular fins using an approximation proposed by Schmidt [18]. Their model assumed a 

linear relationship between the humidity ratio and the dry bulb temperature.  Hong and 

Webb [19] derived an analytical formulation of fin efficiency of fully wet surface for 

circular fins. Their formulation was based on the exact solution of the governing 

differential equation after incorporating a linear relationship between the humidity ratio 

and the dry bulb temperature (McQuiston [13], McQuiston and Parker [17]). Wang et al. 

[3] derived a fully wet fin efficiency for circular fins using the formulation given by 

Threlkeld [11]. They obtained an analytical expression for the fully wet fin efficiency by 

utilizing the enthalpy difference as the driving force for the combined heat and mass 

transfer process. Lin et al. [20] presented an experimental study on the performance of a 

rectangular fin in both dry and wet conditions. They observed that the dehumidification 

phenomenon can be classified into four regions. One of those regions had a thin film of 

condensate. Heggs and Ooi [21] presented a mathematical model for a radial rectangular 

fin. They presented charts that can be used to rate or design specific radial rectangular 

fins for a particular heat transfer specification. However, their model did not take into 

account any condensate effect.  Lin and Jang [22] presented a 2-D analysis for the 

efficiency of an elliptic fin under the dry, partially wet and fully wet conditions for a 

range of axis ratios. One limiting condition was the circular fin.  

The objective of the present work is to develop an analytical solution for heat and 

mass transfer in a wavy fin assembly under wet conditions, considering that the fin is 

covered with a uniform condensate film. This analysis also studies the effects of variation 
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of cold fluid temperature (-5˚C – 5˚C), air side temperature (25˚C – 35˚C), and relative 

humidity (50̊C – 70˚C) on the dimensionless temperature distribution and the 

augmentation factor compared with those under dry condition. The results are expected to 

be meaningful for the design of cooling coils for air conditioning.       

 

1.3 Introduction (Heat Transfer by Jet Impingement)  

There are numerous experimental and theoretical studies on the characteristics 

and heat transfer associated with confined jet impingement on surfaces. These studies 

have considered both single impinging jet and jet arrays. Martin [23] and Viskanta [24] 

reviewed earlier studies of impingement heat transfer. Jet impingement has been 

demonstrated to be an effective means of providing high heat/mass transfer rates in 

industrial processes where rapid heating, cooling, or drying is necessary. These include 

surface coating and cleaning, cooling of electronic components, fire testing of building 

material, annealing of metal and plastic sheets, tempering glass, chemical vapor 

deposition, avionics cooling, cooling of turbine blades, and drying of textiles, according 

to Hong et al. [25]. The principal virtue of this method of cooling is the large rate of heat 

transfer and the relative ease with which both the heat transfer rate and distribution can 

be controlled. 

There are only a few studies on concave and convex surfaces, while several 

studies of impinging jets are for flat surfaces. If the fluid is discharged from a nozzle or 

orifice into a body of surrounding fluid that is the same as the jet itself, then it is called 

submerged. Confined submerged liquid jets find use in both axisymmetric and planar 

configurations. Both configurations share the common feature of a small stagnation zone 
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at the impingement surface, whose size is of the order of the nozzle diameter or slot 

dimension, with the subsequent formation of a wall jet region. The fluid impingement 

and boundary layer behaviors that control the convective heat transfer will be examined 

for two–dimensional under confinement conditions in the present investigation.   

 

1.4 Literature Review (Heat Transfer by Jet Impingement)  

The following is a summary of most related literature pertaining to confined and 

semi–confined jet impingement over flat, concave, and convex surfaces. Glauert [26] 

considered the flow due to jet spreading out over a plane surface, either radially or in two 

dimensions. Solutions to the boundary layer equations were sought for a laminar flow 

using similarity transformation. McMurray et al. [27] studied convective heat transfer to 

an impinging plane jet from a uniform heat flux wall. To fit their data, they based heat 

transfer correlations on the stagnation flow in the impingement zone and on the flat plate 

boundary layer in the uniform parallel flow zone. Metzger et al. [28] experimentally 

studied the effects of Prandtl number on heat transfer to a liquid jet for a uniform surface 

temperature boundary condition. Thomas et al. [29] measured the film thickness across a 

stationary and rotating horizontal disk using the capacitance technique, where the liquid 

was delivered to the disk by a controlled impinging jet. Faghri and Rahman [30] 

experimentally, analytically, and numerically studied the heat transfer effect from a 

heated stationary or rotating horizontal disk to a liquid film from a controlled impinging 

jet, under partially confined conditions for different volumetric flow rates and inlet 

temperatures for both supercritical and subcritical regions. Hung and Lin [31] proposed 

an axisymmetric sub–channel model for evaluating local surface heat flux for confined 
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and unconfined cases. Garimella and Rice [32] presented experimental results for the 

distribution of local heat transfer coefficient during confined submerged liquid jet 

impingement with fluoroinert (FC–77) as the working fluid. Webb and Ma [33] presented 

a comprehensive review of studies on jet impingement heat transfer. Ma et al. [34] 

reported experimental measurements for local heat transfer coefficient during 

impingement of a circular jet perpendicular to a target plate. Both confined and free jet 

configurations were used. Garimella and Nenaydykh [35], Li et al. [36], and Fitzgerald 

and Garimella [37], all considered a confining top plate for a submerged liquid jet. Their 

studies used FC–77 as the working fluid at different volumetric flow rates. Morris and 

Garimella [38] computationally investigated the flow fields in the orifice and the 

confinement regions of a normally impinging, axisymmetric, confined and submerged 

liquid jet. Tzeng et al. [39] numerically investigated confined impinging turbulent slot 

jets. Eight turbulence models, including one standard and seven low Reynolds number k-

ε models were employed and tested to predict the heat transfer performance of multiple 

impinging jets. Inoue et al. [40, 41] experimentally investigated and proposed conceptual 

designs for the cooling of the diverter under critical heat flux (CHF) loads for two-

dimensional confined planar jet on flat and concave surfaces as a function of distance 

from the center, flow velocity and curvature. The obtained results show that the 

centrifugal force on the concave surface under CHF is not significant due to an existence 

of counter wall to suppress the splash of liquid film, which is quite different from planar 

jet cooling with free surface. Li and Garimella [42] experimentally investigated the 

influence of fluid thermo-physical properties on the heat transfer from confined and 

submerged impinging jets. Generalized correlations for heat transfer were proposed based 
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on their results. Rahman et al. [43] numerically evaluated the conjugate heat transfer of a 

confined jet impingement over a stationary disk using liquid ammonia as the coolant. 

Ichimiya and Yamada [44] studied the heat transfer and flow characteristics of a single 

circular laminar impinging jet including buoyancy effect in a narrow space with a 

confining wall. Temperature distribution and velocity vectors in the space were obtained 

numerically. Dano et al. [45] investigated the flow and heat transfer characteristics of 

confined jet array impingement with cross–flow. Digital particle image velocimetry and 

flow visualization were used to determine the flow characteristics. Rahman and Mukka 

[46] developed a numerical model for the conjugate heat transfer during vertical 

impingement of a two–dimensional (slot) submerged confined liquid jet using liquid 

ammonia as the working fluid. Robinson and Schnitzler [47] experimentally investigated 

the heat transfer and pressure drop characteristics of liquid jet arrays impinging on a 

heated surface for both confined-submerged and free-surface flow configurations. For the 

submerged jet arrays, a strong dependence on both jet–to–target and jet–to–jet spacing 

was found and correlated to adequately predict the experimental measurements. Their 

results revealed that submerged and free jet configurations are not susceptible to changes 

in heat transfer when the nozzle is in close proximity (2 ≤ H/dn ≤ 3) to the heated surface. 

Conversely, their results showed how the heat transfer deteriorated monotonically with 

the increment of the jet–to–target spacing (5 ≤ H/dn≤ 20) and spacing between jets. 

Whelan and Robinson [48] experimentally studied the cooling capabilities of a square 

water jet array of 45 jets under fixed jet–to–jet spacing and jet-to-target distance for six 

different nozzle geometries. The confined-submerged jet array tests yielded greater heat 

transfer coefficients when compared with their free jet array counterparts.  
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Rahman et al. [49] numerically studied the heat transfer characteristics of a free 

liquid jet discharging from a slot nozzle and impinging vertically on a curved cylindrical 

shaped plate of finite thickness. The model included the entire fluid jet impingement 

region and flow spreading out over the convex plate under a uniform heat flux boundary 

condition. Computations were done for a series of parameters, such as: jet Reynolds 

numbers, nozzle to target spacing ratios, inner plate radius of curvature, plate thickness, 

and for different nozzle widths using water, fluoroinert, and oil as working fluids. Their 

results were presented for dimensionless solid–fluid interface and maximum temperature 

in the solid, including local and average Nusselt numbers. Numerical simulation results 

were validated by comparing with experimental measurements.  

Chang and Liou [50] presented an experimental study of heat transfer of 

impinging jet-array onto concave- and convex-dimpled surfaces with effusion. The 

results obtained showed the enhancement in heat transfer by each dimpled surface with 

and without effusion. 

From the above literature review it can be noticed that even though confined jet 

impingement heat transfer has been quite extensively investigated, most of these are for 

flat surfaces. Only a few attempted to produce local heat transfer distribution of concave 

or convex surfaces in combination with two–dimensional confined liquid jet 

impingement. In addition, none of the studies have attempted to explore conjugate heat 

transfer effect of a convex surface during two-dimensional confined liquid jet 

impingement.  

Therefore, the intent of this research is to carry out a comprehensive investigation 

of local conjugate heat transfer with a steady flow for a two–dimensional confined liquid 
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jet impingement over flat, concave, and convex surfaces. Computations using water 

(H2O) as the working fluid were carried out for several combinations of geometrical 

surfaces, a variety of jet Reynolds numbers, different solid thickness to curvature ratios, 

four channel spacing ratios, and four radii of curvature of both concave and convex 

surfaces. The thermal conductivity effect was studied with the implementation of four 

different disk materials: copper, silicon, aluminum, and Constantan. Results offer a better 

understanding of the fluid mechanics and heat transfer behavior of confined liquid jet on 

bodies with a current boundary. Even though no new numerical technique has been 

developed, results obtained in the present investigation are entirely new. The numerical 

results showing the quantitative effects of different parameters, as well as the correlation 

for average Nusselt numbers, will be practical guides for engineering design. 
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Chapter 2: Heat Transfer Analysis of Wavy Fin Assembly with 

Dehumidification 

 

2.1 Physical Description of Wavy Fin Heat Exchangers 

The most widely used types of condensers and evaporators are shell-and-tube heat 

exchangers and finned-coil heat exchangers (Figure 2.1). Figure 2.2 shows the schematic 

diagram of the evaporator. In the air conditioning system, the most important heat 

exchanger is the evaporator, because the useful processes of a refrigeration cycle occur in 

the evaporator. Now days the coolant fluid on the automobile radiator is glycol 

(antifreeze), because it has high efficiency in removing heat from the car engine.    

 

 

Figure 2.1 Most evaporator uses in air condition systems. 



www.manaraa.com

 

13 
 

 

Figure 2.2 Schematic diagram of evaporator. 

In real life, there are too many different types of fin evaporators, such as square, 

rectangular, longitudinal, radial, and wavy as shown in Figure 2.3.  

 

Figure 2.3 Some types of fins. 

In general, the wavy fin is more efficient because it has more area, as shown in 

Figure 2.4. The current work represents part of a wavy fin (Figure 2.5). Because of the 

axisymmetric model, we assume that the fin tip is insulated or dT/dR = 0 when R equal to 

RT, the results compared with uninstalled fin tip under the same conditions.  
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Figure 2.4 Side views of a wavy fin assembly.  

 

Figure 2.5 Side views of the physical wavy model. 
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Furthermore, the wavy fin has been converted to straight radial fin, by taking the 

equivalent length of the wavy fin and using it as a real length of the straight radial fin, as 

shown in Figure 2.6. In addition, some calculations have been done for some types of fin. 

The dimensions of a real wavy fin of current work are shown in Table 2.1 and Table 2.2. 

Also Table 2.2 show that there are two types for surfaces treatment, such as un–coated 

surface (present model), and Hydrophilic coating. Hydrophilic coating has an affinity to 

water and is usually charged or has polar side groups to their structure that will attract 

water. 

 

 

Figure 2.6 Side views of the physical street radial model.   
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Table 2.1 Geometric dimensions of sample wavy fin-and-tube heat exchangers. 
No Do 

(mm) 

Dc 

(mm) 

PT 

(mm) 

PL 

(mm) 

Fp 

(mm) 

δf 

(mm) 

N 

1 9.53 9.76 25.4 19.05 1.41 0.115 2 

2 9.53 9.76 25.4 19.05 1.81 0.115 2 

3 9.53 9.76 25.4 19.05 2.54 0.115 2 

4 9.53 9.76 25.4 19.05 2.54 0.115 4 

5 9.53 9.76 25.4 19.05 2.54 0.115 6 

6 9.53 10.03 25.4 19.05 1.41 0.250 2 

7 9.53 10.03 25.4 19.05 1.81 0.250 2 

8 9.53 10.03 25.4 19.05 2.54 0.250 2 

9 9.53 10.03 25.4 19.05 2.54 0.250 4 

10 9.53 10.03 25.4 19.05 2.54 0.250 6 

Note: Tubes are made of copper with a wall thickness of 0.3 mm. 
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Table 2.2 Geometric dimensions of sample fin-and-tube heat exchangers. 

No Dc 

(mm) 

PT 

(mm) 

PL 

(mm) 

Fp 

(mm) 

δf 

(mm) 

N Surface treatment Fin 

type 

1 7.64 21 12.7 1.27 0.115 2 Un-coated Slit 

2 7.64 21 12.7 1.28 0.115 2 Hydrophilic coating Slit 

3 6.93 17.7 13.6 1.21 0.115 1 Un-coated Plain 

4 6.93 17.7 13.6 1.99 0.115 1 Un-coated Plain 

5 7.53 21 12.7 1.23 0.115 2 Hydrophilic coating Plain 

6 7.53 21 12.7 1.23 0.115 2 Un-coated Plain 

7 7.53 21 12.7 1.78 0.115 2 Hydrophilic coating Plain 

8 7.53 21 12.7 1.78 0.115 2 Un-coated Plain 
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2.2 Mathematical Model 

In the current study we consider a wavy fin assembly of uniform cross section and 

pitch under wet condition, as shown in Figure 2.4. The water condenses at the surface as 

filmwise, dropwise, or mixed mode when a humid air contacts to the surface at below its 

dew point temperature. The differences between them depend on the surfaces. For 

instance, clean surfaces tend to promote filmwise, and treated surfaces dropwise, 

condensation. The created film is greatly thinner than the boundary layer in the 

dehumidification process, this makes the condensate thermal resistance to heat transfer 

flow negligible.  Consider a uniform heat exchanger wavy fin attached to a plane wall, as 

shown in Figure 2.5. To complete the development of the formulation model, simplifying 

assumptions are made as follows: 

1.  The heat flow in the fin and the temperature at any point on the fin remain constant 

with the time. 

2.  The fin material is homogenous; its thermal conductivity, the condensate film, and the 

wall are constant. 

3.  There is no contact resistance between fins in the configuration or between the fin at 

the base of the configuration and the prime surface. 

4.  The convective heat transfer coefficients between the fin and the surrounding medium 

are uniform and constant over the entire surface of the fin. 

5.  The temperature of the medium surrounding the fin is uniform. 

6.  The fin width is so small compared with its height that temperature gradients across 

the fin width may be neglected. 

7.  The temperature of the base of the fin is uniform. 
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8.  There are no heat sources within the fin itself. 

9.  Heat transfer to or from the fin is proportional to the temperature excess between the 

fin and the surrounding medium. 

10.  Condensation occurs when the surrounding air dew point temperature is reached. 

Assume that the fin is dissipating heat to the surrounding environment at 

temperature Ts, heat is transferring from cold fluid T1, and the temperature distribution at 

any point is T(x). Because there is no heat generation in steady state, the energy required 

for heat entering and leaving the element (∆x) must equal the heat dissipated by 

convection over the two fin faces, each with area (L∆x), so that the total surface area for 

convective dissipation is ∆s = (2L∆x).  

At steady state condition for one-dimension with no heat generation, the energy 

balance through the wall becomes:  

(1)                                                                                                                          0
dx

θd
2
w

2

=  

The heat transfer by conduction is equal to the difference between the heat entering and 

leaving the elements, ∆x, according to Fourier law. 

(2)                                                                                        Ι
dx

dTkAΙ
dx

dTkAΔq Δxx
x

x
x

+−=

 

xxs dT dθ and ,TT(x)θ(x)For  =−=  

The minus sign in the Fourier law means the direction of heat flow is in a 

direction opposed to the positive sense of the coordinate system:  

(3)                                                                                                                       
dx

dT
kAq x−=  
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The total heat that is dissipated from the two faces of the fin over the element ∆x, 

is equal to: 

(4)                                                                         )hw(wm]qTh[TΔq fgsxas(s)(x) −+−= ⋅  

(5)                                                                   flux      heat Latent  q)hw(wm cfgsxa ≡=−  

(6)                                                                             flux      heat  Sensible]qTh[T s(s)(x) ≡−  

Now the steady state energy balance can be used to combine equations 1 and 2 so that

(7)                            )hw(wm]hTh[TΙ
dx

dTkAΙ
dx

dTkAΔq fgsxafg(s)(x)Δxx
x

x
x −+−−−= ⋅

+  

(8)                                                              
dx

θd
 Ι

dx
dTkAΙ

dx
dTkAΔqLim 2

w
2

Δxx
x

x
x

0
=



 −= +

→∆x
 

( ) [ ] (9)                                                                                               0qq
dx

xdkA sc2
θ

2
f =+−  

The ratio of sensible to total heat transfer calculated at fin temperature is R, then: 

4equation in  substitute ,
R
qqq 

qq
qR s

sc
sc

s =+⇒
+

=  

( ) (10)                                                                                                        0
RAk

q
dx

xd

ff

s
2

θ
2

f =−

 

We use the manipulation to develop energy balance from simultaneous heat and 

mass transfer from the humid air to the condensate film. 

( )

( )
(11)                                                                                               0(x)θ

RP
B 

dx
xd

f
θ

2
i

2
θ

2

f

f =−
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The boundary conditions are the following. 

• At x = 0  

(12)                                                                                                   )T2ph(T
dx

dT
kA 1w

w −=

 

( ) ( ) ( )[ ] (13)                                                                       TTTT
k
h

pdx
dθ

TT 212w
w

w
21 −−−=−

 

( )
( )

( )
( ) (14)                                                                      

TT
TT

TT
TT

 
k
ph

pdx
(x)dθ

21

21

21

2w

w

w 















−
−

−







−
−

=

 

( ) (15)                                                                                                  (x)θ1B
pdx

(x)dθ
wi

w −−=

 

• At X = R0,  

(16)                                                                                                                    (z)θ(x)θ fw =
 

( ) (17)                                                                             (x)θp1
R
B

pdz
(z)dθkp

pdx
(x)dθ

w
b

i2fw −−=

 

 

• At R= RT 

(18)                                                                                                                              0
dR
dθ f =

 

The ratio of the sensible heat flux to the total heat flux qs/(qs + qc) is given by the 

equation: 
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( ) ( )( ) ( ) (19)                                              
θ

θww
h
hTThρ1

q
qθR

1

2

2

m
12fgma

t

s

−















 −









−+==

 

The input temperature and relative humidity were used to determine the dewpoint and the 

rate of condensation by using standard psychrometric equations (ASHRAE [51]).  

The overall fin efficiency, η , is defined as the ratio of the actual total heat 

transfer rate to the maximum total heat transfer rate, 

(20)                                                                                                                
q
qη

max

fin=  

In this case the fin performance is determined by a combination of heat and mass 

transfer. The actual total heat transfer, qfin must include both the sensible heat transfer 

and the latent heat transfer originated by mass transfer (condensation). The sensible heat 

transfer is due to convection from the air to the fin because of the temperature difference 

between the air and the fin, and the latent heat transfer is caused by the humidity ratio 

difference between the air and the fin surface. The maximum heat transfer rate, qmax 

corresponds to an ideal fin whose surface temperature equals the temperature at the fin 

base under wet conditions.  
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2.3 Results and Discussion 

This section describes the heat transfer characteristics of the mathematical model 

used to perform numerical simulation for conditions found in a typical air conditioner 

cooling coil under wet condition. The integration of differential equations worked out by 

the Range-Kutta method with shooting technique [52] corresponds to a characteristic 

direct expansion cooling coil used in air conditioning applications, some values are kept 

constant in all simulations such as, Bi1 = 1.0, Bi2 = 0.1, K=1.0, K1=0.004, P = 0.25, W = 

0.5, ∆ = 2 P, Φ = 0.1 P. These values were chosen using heat transfer coefficients and 

geometric parameters. Various values of RH, T1, and T2 are represented in Figures 2.7 – 

2.9 as a dimensionless temperature Θ versus a dimensionless distance. Figure 2.7 

represents the variations of dimensionless temperature with dimensionless distance for 

changes in the relative humidity. It could be seen that an increase in relative humidity 

decreases with dimensionless temperature, Θ. The force of water vapor diffusion 

increases at a larger relative humidity, and as a result, so do the number of molecules of 

water condensing on the fin surface.  Also, a higher latent heat transfer and lower 

temperature at the fin surface occurs. The figure also demonstrates the significant 

benefits of water vapor condensation during the heat transfer process, when the 

temperature profile is compared to that for a dry condition (zero relative humidity). 
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Figure 2.7 Variation of dimensionless temperature distribution with the variation in 
relative humidity. 

 

Variations of dimensionless temperature with dimensionless distance for changes 

in the cold fluid temperature T1 can be seen in Figure 2.8. The figure shows that the fin 

temperature increases when T1 increases, and this leads to a decrease in the temperature 

difference between the fin and its surroundings. Thus, both heat and mass transfer 

decrease. The condensation comes to an end when T1 is increased to a value above the air 

dew point temperature. It can be noted that although the local temperature at the wall and 

the fin changes with T1, the change in the dimensionless temperature Θ is insignificant. 

Also, there is a large over prediction of the temperature when the fin is assumed to 

remain dry during the heat transfer process. 
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Figure 2.8 Variation of dimensionless temperature distribution with variation in cold fluid 
temperature at relative humidity 50%. 

 

The dimensionless temperature as a function of the dimensionless distance for the 

variation in the surrounding temperature T2 is shown in Figure 2.9. It was noted that an 

increase in the air side temperature increases the heat transfer rate in the wet fin, and also 

the dimensionless temperature at the wall as well as in the fin decreases with the increase 

in T2. Pure conduction causes a linear temperature at the wall, after which a larger slope 

of temperature curve is seen at the fin because of lateral convection. At constant relative 

humidity, air dry bulb temperature converts to moisture content (humidity ratio). 

Consequently, both sensible and latent heat transfer increase when at higher 
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temperatures. Figure 2.9 shows a plot of the dimensionless temperature Θ for artificial 

dry conditions when the effects of condensation have been ignored, and also shows the 

discrepancy in the temperature distribution in the fin between wet and dry conditions. 

The latent heat transfer due to condensation is a significant portion of the total heat 

transfer and should not be ignored in any cooling coil design.  
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Figure 2.9 Variation of dimensionless temperature distribution with variation in 
surrounding air dry bulb temperature at relative humidity 50%. 
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Figure 2.10 shows the variation of dimensionless temperature distribution as a 

function of the dimensionless distance under two conditions, fin tip with and without 

insulation at constant relative humidity 50%. It was observed that by leaving the fin tip 

with no insulation, the area of the surface is increased, which causes better heat 

dissipation by increasing the fin performance. It can be seen that at insulation fin tip the 

heat dissipation is less. 

 

  

Figure 2.10 The present model with and without insulation in the fin tip, and at 50% RH. 
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humidity ratio was assumed in this comparison. It can be observed that there is more 

agreement in wavy model than in their model. Figure 2.12 shows the comparison 

between the present model with the models of Kazeminejad [6] and Rosario and Rahman 

[10]. This comparison shows results of 1-D models for dry and 50 percent relative 

humidity. Constant thickness film on the fin surface was presented in wavy model. It can 

be noted that all models show the same tendency of decreasing dimensionless 

temperature with an increase of relative humidity because of the increase of latent heat 

transfer due to condensation. Rosario and wavy model represent superior results than the 

Kazeminjad model, and this demonstrates that to achieve excellent fin performance, one 

has to design the fin in a radial shape (Rosario) or wavy shape (wavy model).   

  

Figure 2.11 Comparison of rectangular and wavy models for dry and 50% RH. 
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Figure 2.12 Comparison between present model and Kazeminejad [6]; and Rosario and 
Rahman [10]. 

 

Computational results for the heat transfer of the fin assembly with and without 

dehumidification for various values of T1, T2, and RH, are plotted in Figures 2.13 – 2.15.  
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distance after 3.5. The value of the augmentation ratio is always greater than 1, 

demonstrating the descent of fin efficiency with condensation. The insignificant influence 

of the refrigerant temperature (T1) on the augmentation ratio is shown in Figure 2.13. The 

fin efficiency increases in overall heat transfer rate, although it is represented by the fin 

assembly reduced with condensation. From Figure 2.14 and Figure 2.15, both dry bulb 

temperature and relative humidity increases significantly with the increase in the 

augmentation ratio; simultaneously, the fin efficiency decreases with more condensation 

at the fin surface.  

 

Figure 2.13 (Aug)dry/(Aug)wet variation with change in T1. 
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Figure 2.14 (Aug)dry/(Aug)wet variation with change in T2. 
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Figure 2.15 (Aug)dry/(Aug)wet variation with change in RH. 
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order to obtain better fin performance, but there are some physical limitations to building 

such a fin arrangement. The results demonstrate that the fin performance in the wavy fin 

depends on the area of the fin, which also indicates that the wavy fin has better 

performance than the rectangular one which has less area. 

 

  

Figure 2.16 Comparison of 1-D and 2-D radial models for dry and 50% RH. 

  

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 1.1 1.2 1.3 1.4 1.5 1.6

( T
 -

T 2
) /

 ( 
T 1

-T
2)

Dimensionless Distance 

1-D Dry
1-D RH = 50 %
2D Dry
2D RH = 50 %



www.manaraa.com

 

35 
 

 

Figure 2.17 Comparison of the wavy model and the converted rectangular model at dry 
and 50% RH. 
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Chapter 3: Conjugate Heat Transfer Analysis of a Confined Liquid Jet 

Impingement on Concave and Convex Surfaces 

 

 

3.1 Modeling and Simulation 

 

Figure 3.1 Two-dimensional liquid jet impingement on a uniformly heated concave 
surface. 

 
 

The physical model corresponds to a two-dimensional confined liquid jet that 

impinges on a solid curved surface of circular shape, as shown in Figure 3.1. The jet 

discharges from the nozzle and impinges perpendicularly at the center and top of the 
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curved body, while its bottom is subjected to a constant heat flux. The fluid is Newtonian 

and the flow is incompressible and symmetric about the mid–plane under a steady state 

condition. The ∂/∂z terms can be omitted as a result of this two-dimensional analysis. The 

variation of fluid properties with local temperature is taken into account. The equations 

describing the conservation of mass, momentum (x and y directions respectively), and 

energy using a Cartesian coordinate system can be written (check Burmeister). 
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The variation of thermal conductivity of solids with temperature is not significant. 

Therefore, the conservation of energy inside the solid can be characterized by the 

following equation: 
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The following boundary conditions are used to complete the physical problem 

formulation. 
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The local heat transfer coefficients can be defined as:  
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The average heat transfer coefficient can be calculated by integrating the local 

distributing results in the following equation. 
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Here, intT  is the average temperature at the solid–liquid interface. The average 

temperature is calculated by taking the area–weighted average of the local interface 
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temperature. The local and average Nusselt numbers are calculated according to the 

following expressions: 
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The governing equations (1–5) along with the boundary conditions (6–14) are 

solved using the Galerkin finite element method as demonstrated by Fletcher [54]. Four 

node quadrilateral elements are used. In each element, the velocity, pressure, and 

temperature fields are approximated, which leads to a set of equations which define the 

continuum.  

The number of elements required for accurate results is determined from a grid 

independence study. A structured grid is used in which the size of the elements near the 

solid–fluid interface is made smaller, to adequately capture large variations in velocity 

and temperature in that region. The solution of the resulting nonlinear differential 

equations is carried out using the Newton–Raphson method. Due to the non–linear nature 

of the governing transport equations, an iterative procedure is used to arrive at the 

solution for the velocity and temperature fields. The solution is considered converged 

when the field value does not change from one iteration to the next and the sum of the 

residuals for all the dependent variables is less than a predefined tolerance value; in this 

case, 10-6. 

The values of Reynolds number is limited to a maximum of 2000 to stay within 

the laminar region. The nozzle opening and the solid plate have a length of 3 and 30 mm 

respectively. The heat flux (q) is kept constant at a value of 125 kW/m2. The incoming 
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fluid jet temperature (Tj) is 310 K for water. The base thickness of the solid plate (b) is 

varied over the following values: 10, 20, 30, 40, 50 mm. The channel spacing height or 

gap is set to the following values: 1, 2, 3, 4, 5 mm. The radius of curvature (RO) is 

extended from 30 to 34 mm. The range of Reynolds number is varied from 750 to 2000. 

All runs used in the paper check out to be laminar. The simulation is carried out for a 

number of disk materials: aluminum, Constantan, copper, and silicon. The properties of 

solid materials are obtained from Özisik [55]. Fluid properties for H2O are obtained from 

Bejan [56]. The properties of the above fluids are correlated according to the following 

equations:  

• water, between 300 K < T < 411 K;  

• Cpf = 9.5x10-3.T2 – 5.9299.T + 5098.1;  

• kf = –7.0x10-6.T2 + 5.8x10-3.T – 0.4765;  

• ρf = –2.7x10-3.T2 + 1.3104.T + 848.07; and  

• ln(µf) = – 3.27017 – 0.0131.T. 
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3.2 Results and Discussion  

This section describes the heat transfer characteristics of a confined liquid jet 

impingement under flat, concave, and convex surfaces. The velocity vector distribution 

remains uniform at the potential core region of the confined liquid jet through the 

curvature, as shown in Figure 3.2. The direction of motion of the fluid particles shifts by 

more than 90ᵒ in a concave surface, 90ᵒ in the flat surface, and less than 90ᵒ in the convex 

surface.  

 

Figure 3.2 Velocity vector distribution for jet impingement on a  curved copper plate. 
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Thereafter, the fluid strikes the solid surface at which point there is a rapid 

deceleration, while the flow changes direction along the surface. After this, there is a 

brief acceleration starting the development of boundary layer. It can be noted that the 

boundary layer thickness increases along the radius of curvature, and the frictional 

resistance from the wall is eventually transmitted to the fluid flow.  The fluid between the 

boundary layer zone and confined top plate has much smaller flow velocity compared to 

the inlet velocity. This is due to frictional resistance from the solid body, as well as the 

confined plate. 

 

Figure 3.3 Solid–fluid interface temperature for different number of elements in x and y 
directions (Re = 1,000, b = 30, w = 0.6 cm). 
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(y) and (x) directions, respectively. Numerical results for a 12x130 grid gave almost 

identical results compared to 10x195 and 9x150 grids for an impingement height (hn) 

equal to 30 mm. Therefore, the chosen grid is 12x130, which carries an average margin 

error of 0.163%; all further computations are carried out using this grid distribution. The 

size of the elements varies with denser distribution at the solid–fluid interface and at the 

nozzle axis.  

Figure 3.4a and Figure 3.4b show the variation of solid–fluid dimensionless 

interface temperature plots and local Nusselt number distributions at different Reynolds 

numbers for concave and convex surfaces respectively, with water as a cooling fluid and 

copper as the solid body material. The plots reveal that dimensionless interface 

temperature decreases with jet velocity (or Reynolds number) for either type of plate 

configuration. At any Reynolds number, the dimensionless interface temperature has a 

low value at the stagnation point and increases radially along the radius of curvature, 

reaching the highest value at the solid fluid interface distance (S) (approximately equal to 

2.52 cm) and decreases to its lowest value at the end of the concave curvature, as shown 

on Figure 3.4a. A new behavior occurs along the upright concave surface, causing the 

dimensionless temperature to drop.  This is due to an energy balance, where more of the 

heat dissipates at the interface along the jet impingement region that is closer to the base 

of the plate, under a uniform heat flux boundary condition that gradually moves far away 

at constant flow rate conditions. At this condition, the thickness of the thermal boundary 

layer decreases along the radius of curvature, causing the interface temperature to drop 

along the radial distance. This allows the heat to dissipate faster and results in a lower 

interface temperature at the end of the concave plate.  
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(a)  

 

(b) 

Figure 3.4 Dimensionless interface temperature and Local Nusselt number distribution 
for (a) concave and (b) convex copper plate at different Reynolds numbers 
and water as the cooling f1uid. 
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Conversely, the dimensionless interface temperature for the convex plate has the 

lowest value at the stagnation point (underneath the center of the axial opening) and 

increases radially downstream, reaching the highest value at the end of the curvature, as 

shown in Figure 3.4b. The thickness of the thermal boundary layer increases along the 

radius of curvature of the convex plate and causes the interface temperature to increase 

due to the proximity of the solid-fluid interface to the heat flux boundary condition.  

Local Nusselt number distributions of Figure 3.4a are half–bell shaped with a 

peak at the stagnation point and gradually increase along the concave surface, reaching 

the highest value at the end of the radius of curvature. Contrarily, all local Nusselt 

number distributions of Figure 3.4b show a half–bell profile with a peak at the stagnation 

point and a decrease along the radius of curvature of the convex plate. Figures 3.4a and 

3.4b confirm how an increasing Reynolds number contributes to more effective cooling. 

Similar profiles shown in Figure 3.4b have been documented by Ma et al. [34], and 

Garimella and Nenaydykh [35]. 

Figures 3.5a and 3.5b present the average Nusselt number as a function of 

Reynolds number and different radius of curvature. It can be seen that the average 

Nusselt number increases according to the Reynolds number. As the flow rate (or 

Reynolds number) increases, the magnitude of fluid velocity near the solid–fluid interface 

that controls the convective heat transfer rate increases. Furthermore, at a particular 

Reynolds number, the Nusselt number decreases with the increment of the radius of 

curvature. In figure 3.5b we can see that at radius 7.01 cm the average Nussselt number is 

highest, this because the concave is more closer to the heat flux.  
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(a) 

 

(b) 

Figure 3.5 Average Nusselt number at different Reynolds numbers for (a) concave (b) 
convex copper plate with water as the cooling fluid (R= 6.21, 6.61, 7.01, and 
∞,cm).  
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In addition, it can be seen that the average Nusselt number plots get closer to each 

other as the radius of curvature decreases. This behavior confirms the positive influence 

of the radius of curvature (ψ) on the average Nusselt number down to ψ=62.1, which 

corresponds to an outer radius of curvature of 6.21 cm.   

The radius of curvature effects on the dimensionless interface temperature and 

local Nusselt number are shown in Figure 3.6a and Figure 3.6b for concave and Figures 

3.7a and 3.7b for convex.  The dimensionless solid–fluid interface distance increases for 

the concave from the impingement region all the way to the end at the infinite radius, and 

increases to the peak point at the highest solid thickness region and drops down to the 

lowest at the shortest solid thickness for other radiuses as shown in Figure 3.6a. We 

observe in Figure 3.7a better results for convex during the increase in temperature from 

the impingement region all the way to the end at all radiuses. The higher outflow 

temperature occurs when the temperature is lower at the stagnation region. This is fairly 

estimated, since the total heat transferred to the curvature as well as the fluid flow rates 

are the same for all cases. For the concave, as shown in Figure 3.6b, the local Nusselt 

number decreases with the solid-fluid interface distance for a rate of radius of curvature 

(ψ) from 31.05 – ∞ at Reynolds number of 1000 at maximum of thickness and starts 

increasing to highest at the minimum of thickness.  
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(a) 

 

(b) 

Figure 3.6 Solid–fluid interface distance and (a) dimensionless interface temperature 
distribution (b) Local Nusselt number distribution for a concave copper 
wafer at different radius, and water as the cooling f1uid (R= 6.21, 6.61, 
7.01, and ∞ cm). 
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(a) 
 

 

(b) 
 
Figure 3.7 Solid–fluid interface distance and (a) dimensionless interface temperature 

distribution (b) Local Nusselt number distribution for a convex copper wafer 
at different radius, and water as the cooling f1uid (R= 6.21, 6.61, 7.01, and 
∞ cm).  
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Figure 3.8b illustrates superior consequences for convex compared with concave 

throughout the decrease of Nusselt number all the way to the end, without changing due 

to the difference of thicknesses. The local fluid velocity adjacent to the heated material 

surface creates an enhancement of Nusselt number due to the confined impingement jet.  

Copper has been used as the solid material and water as the cooling fluid for a Reynolds 

number of 1000 and solid thickness to curvature ratio of 0.161 – 0.5.  

The difference of solid thickness to curvature spacing ratios (Φ) from 0.161 – 0.5 

are modeled for water as the coolant and copper as the solid material. The effects of solid 

thickness to the spacing of curvature on the local Nusselt number and dimensionless 

interface temperature at a Reynolds number of 1000 are shown in Figures 3.8a and 3.8b. 

It may be noted that the solid thickness insignificantly affects the local Nusselt number 

distribution particularly at the end; however there is a minor change at the stagnation 

region. 
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  (a) 

 
 

(b) 
 
Figure 3.8 Solid–fluid interface distance and (a) dimensionless interface temperature 

distribution (b) Local Nusselt number distribution for different material 
thickness (H = 1, 1.5, 2, 2.5, and 3 cm). 

  

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 2 4 6 8 10

D
im

en
si

on
le

ss
  I

nt
er

fa
ce

 
Te

m
pe

ra
tu

re
, Θ

in
t

Solid-Fluid Interface Distance, S(cm)

H = 1 cm

H = 1.5 cm

H = 2 cm

H = 2.5 cm

H = 3 cm

22.5

24.5

26.5

28.5

30.5

32.5

34.5

0 2 4 6 8 10

Lo
ca

l N
us

se
lt 

N
um

be
r, 

N
u

Solid-Fluid Interface Distance, S(cm)

H = 1 cm

H = 1.5 cm

H = 2 cm

H = 2.5 cm

H = 3 cm



www.manaraa.com

 

52 
 

The solid–fluid dimensionless interface temperature and local Nusselt number 

distributions for five different spacing of curvature for water as the cooling fluid and 

Reynolds number of 1000 are shown in Figures 3.9 (a and b) and 3.10 (a and b), 

respectively. Due to the higher jet momentum at impingement at the end of the nozzle, 

the temperature at the solid–fluid interface decreases, causing higher velocity of fluid 

particles adjacent to the plate, enhances the heat transfer. In Figures 3.9 and 3.10, a 

higher Nusselt number is seen all along the arc length at all radii of different spacing, and 

also the Nusselt number increases by increasing the spacing of curvature (from 0.1 - 0.5 

cm).  Also, we have seen that the impingement height affects the Nusselt number more at 

the stagnation region and the early part of the boundary layer region. For larger spacing 

(0.5 cm), the values get closer for all impingement heights. Hence, it can be concluded 

that the jet momentum more strongly affects the areas subjected to direct impingement. 

Because of the fast traveling of heat at less material, it can be noted that the Nusselt 

number increases at all radii of different spacing.  
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(a) 

 
 

(b) 
 
Figure 3.9 Solid–fluid interface distance and (a) dimensionless interface temperature 

distribution (b) Local Nusselt number distribution for different spacing of 
concave curvature (D = 0.1, 0.2, 0.3, 0.4, and 0.5 cm).  
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(a) 
 

  
 

(b) 
 
Figure 3.10 Solid–fluid interface distance and (a) dimensionless interface temperature 

distribution (b) Local Nusselt number distribution for different spacing of 
convex curvature (D = 0.1, 0.2, 0.3, 0.4, and 0.5 cm).  
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Figures 3.11a and 3.11b show the dimensionless solid-fluid interface temperature 

and local Nusselt number distribution plots respectively as a function of the 

dimensionless radial distance measured from mid–plane axis for different solid materials, 

with water as the working fluid. The numerical simulation is carried for a set of materials: 

aluminum, copper, Constantan and silicon, which all have different thermo-physical 

properties. The temperature distribution plots reveal how the thermal conductivity of the 

solids affects the heat flux distribution that controls the local interface temperature. It 

may be noted that Constantan has the lowest temperature at the impingement axis and the 

highest at the inner radial distance of the concave plate. This large interface temperature 

variation is due to its lower thermal conductivity. As the thermal conductivity increases, 

the thermal resistance within the solid becomes lower and the interface temperature 

becomes more uniform, as seen in the plots corresponding to copper and silicon. The 

cross-over of the curves of the four materials occurs due to a constant fluid flow and heat 

flux rate that provides a constant thermal energy transfer for all circumstances. Narrow 

and elevated bell shape pattern for local Nusselt number distributions are seen in Figure 

3.11b for all solid materials with low thermal conductivity. Conversely, high thermal 

conductivity materials such as aluminum and copper portray a more uniform local 

Nusselt number distribution in general.  
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(a) 
 

 
 

(b) 
 
Figure 3.11 Solid–fluid interface distance and (a) dimensionless interface temperature 

distribution (b) Local Nusselt number distribution for different materials 
(copper, silicon, aluminum, and Constantan).  
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Figure 3.12a and Figure 3.12b show the variation of solid–fluid dimensionless 

interface temperature plots and local Nusselt number distributions at different Reynolds 

numbers for concave and convex surfaces respectively, with water as a cooling fluid and 

silicon as a material. It can be seen that there is no significant change in the results 

between copper and silicon. The same plots reveal that dimensionless interface 

temperature decreases with jet velocity (or Reynolds number) for either type of plate 

configuration.  Also, at any Reynolds number, the dimensionless interface temperature 

has a low value at the stagnation point and increases radially along the radius of 

curvature, reaching the highest value at the solid fluid interface distance, (S) 

(approximately equal to 3.00 cm) and decreases to its lowest value at the end of the 

concave curvature, as shown on Figure 3.12a.  The difference is ±0.48 cm.  This behavior 

is due to the development of a thermal boundary layer as the fluid moves downstream 

from the center of the concave curvature, and the difference between the thermal 

conductivity of the material. The thickness of the thermal boundary layer increases along 

the radius of curvature and causes the interface temperature to increase; subsequently the 

area of curvature diminishes along the radial distance, allowing the heat to dissipate 

faster, resulting in a lower interface temperature at the end of the concave plate. This also 

makes a difference in the local Nusselt number, within a range of about ±48.  On the 

other hand, the dimensionless interface temperature for the convex plate has the lowest 

value at the stagnation point (underneath the center of the axial opening) and increases 

radially downstream, reaching the highest value at the end of the curvature, as shown in 

Figure 3.12b. The thickness of the thermal boundary layer increases along the radius of 

curvature of the convex plate and causes the interface temperature to increase.  This is 
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caused by the proximity of the solid-fluid interface due to the heat flux boundary 

condition.  

Local Nusselt number distributions of Figure 3.12a are half–bell shaped with a 

peak at the stagnation point and gradually increase along the concave surface, reaching 

the highest value at the end of the radius of curvature. Contrarily, all local Nusselt 

number distributions of Figure 3.12b show a half–bell profile with a peak at the 

stagnation point and decrease along the radius of curvature of the convex plate.  
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(a) 

 
(b) 

Figure 3.12 Dimensionless interface temperature and Local Nusselt number distribution 
for (a) concave and (b) convex silicon plates at different Reynolds numbers 
and water as the cooling f1uid.  
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Papers used for the validation of this numerical study included analytical works 

by. Inoue et al.[40] and Inoue et al.[41] using fluids with Reynolds numbers between 500 

– 200. The fluids were tested for heat removal under confined liquid jet impingement on 

a heated flat surface maintained at uniform heat flux. The graphical representation of 

actual numerical average Nusselt number results at the stagnation point at different 

Reynolds numbers are shown in Figure 3.13. The local Nusselt number under Reynolds 

numbers of 750, 1,000, 1,250, 1,500, 1750, and 2000 correlates with an average 

difference margin of 17.95%, 12.1%, 11.11%, 10.35%, 12.7%, and 12.12% respectively. 

The results shown in Figure 3.13 were on average within 34.29% of Rahman et al. [49] 

within 35% of A. Inoue et al. [40], and within 33.33% for the current work. Considering 

the inherent discretization and round off errors, this comparison of Nusselt numbers at the 

stagnation point is quite satisfactory.  
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Figure 3.13 Stagnation Nusselt number comparison of Rahman et al. [49], Inoue et al. 
[40], with actual numerical results under different Reynolds numbers (w = 
4 mm, d =2 mm). 
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Chapter 4: Conclusions 

 

The analytical model for a one-dimensional wavy fin assembly under fully wet 

conditions has been developed. The model was considered with and without insulation at 

the fin tip under the same conditions. The same model has been converted to straight 

radial (rectangular) fin, and the results revealed that at the insulation fin tip the heat 

dissipation is less.  We also found that under the same operating conditions; the radial 

wavy fin provides better heat transfer performance than the radial rectangular one. The 

cooling and dehumidification fin assembly heat transfer performance has been carried out 

when synchronous mass and heat transfer take place. The results show that generally the 

fin efficiency depends on the condition of the surface and the area of the fin under wet 

condition. The heat transfer characteristics have been carried out at variations of T1, T2, 

and RH. The latent heat transfer under wet condition during the condensation process 

enhances the heat transfer rate to a fin assembly when dehumidification occurs, at a rate 

which is always higher than the dry fin assembly.  Under fully wet conditions, the 

dimensionless temperature, Θ decreases with temperature and relative humidity of the 

surrounding air, thus the fin efficiency changes rapidly with air relative to humidity. The 

study of the effects of differences in cold fluid temperature (T1), air side temperature (T2), 

and relative humidity (RH) has led to a better understanding of heat and mass transfer 

occurring in the air-conditioning dehumidification coils. The results show that at any 

increase in the air side temperature (T2), while the cold fluid temperature and relative 
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humidity remain constant, both sensible and latent heat transfer increases at the coil. The 

heat and mass transfer decrease by increasing the fin temperature when the cold fluid 

temperature (T1) increases, and the air side temperature (T2) and the relative humidity 

(RH) remain constant. Due to a larger condensation rate at the fin surface, the 

dimensionless temperature decreases when the relative humidity increases. At all results, 

the heat transfer rate of the fin assembly is higher than that of a dry fin assembly when 

dehumidification occurs. The variations of cold fluid temperature (T1) enhance the 

augmentation factor of the wet fin assembly compared to the dry surface condition. The 

increase in the amount of dehumidification makes a reduction in the wet augmentation 

factor. The increment in the area of the fin surface, air side temperature (T2), and the 

relative humidity (RH), illustrate the increase in the ratio of the dry to wet augmentation 

factor. The findings of the current work demonstrate that the overall fin efficiency is 

dependent on the relative humidity of the surrounding air and the area of the fin. The 

efficiency depends on the fin surface area; The increase in surface area causes better heat 

dissipation by increasing the fin performance.  However, even though an increase in fin 

surface area is desirable in order to obtain better fin performance, there are some physical 

limitations involved in building such a fin arrangement. Covering dry, partially wet, and 

fully wet conditions gives us a complete understanding of heat transfer phenomenon for 

an efficient design of dehumidification apparatus. 

The solid–fluid dimensionless interface temperature and local and average 

Nusselt number for concave, convex, and flat surfaces show a strong dependence on 

Reynolds number, curvature spacing, length of radius, impingement height, and solid 

material properties. The increment of Reynolds number increases the local heat transfer 
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coefficient distribution values over the entire solid-fluid interface for all different 

materials. The results showed that decreasing the nozzle width increases the local Nusselt 

number at the core region. Decreasing the channel spacing, plate thickness, or plate inner 

radius of curvature all enhanced the local Nusselt number. It can be seen that 

implementation of confined liquid jet impingement over a convex surface is more 

effective compared to flat or concave surface cooling methods. The ongoing contrivance 

harvests low cost and accurate prediction of processes which involve jet impingement 

cooling. This approach is useful for the design of relevant cooling applications which 

enhance the heat transfer removal encountered on high heat flux of concave and convex 

surfaces. Numerical simulation results are validated by comparison with the experimental 

measurements of flat and concave surfaces.  
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Appendix A: Q-Basic Heat Transfer Code of a Wavy Fin Analysis 
 

'MUTASIM AN ROSARIO - Research Basic program' 

'this program solves the  ordinary differential equations' 

'For the radial fin assembly heat transfer with dehumification.' 

'X is the adimensional radius variable for fin portion.' 

'Y is the derivative of F for fin portion.' 

'F is the adimensional temperature  for fin portion.' 

DIM X(1 TO 100), Y(1 TO 100), F(1 TO 100) 

'X1 is the adimensional radius variable for wall portion.' 

'Y1 is the derivative of F1 for wall portion.' 

'F1 is the adimensional temperature  for  portion.' 

DIM X1(1 TO 100), Y1(1 TO 100), F1(1 TO 100) 

'T  is the temperature used to calculate ratio of sensible to 

total heat.' 

'pws saturation pressure.' 

'pw partial  pressure ofwater vapor .' 

'w humidity ratio.' 

'the procedure used to calculate the  humidity ratio taken from 

ASHRAE.' 

DIM T(1 TO 100), pws(1 TO 100), pw(1 TO 100), w(1 TO 100), CON(1 

TO 100), R(1 TO 100) 

'initial guess -0.01 Sept 14 97 

HR = .50  

cpa = .24 

rma = .075 

hfg = 1076 

T1 = 32  

T2 = 75.2 
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Appendix A: (Continued) 

C8 = -1.04404 * 10000 

C9 = -1.129465 * 10 

C10 = -2.702235 / 100 

C11 = 1.289036 / 100000 

C12 = -2.478068 / 1000000000 

C13 = 6.545967 

CON2 = C8 / (T2 + 460) + C9 + C10 * (T2 + 460) + C11 * ((T2 + 

460) ^ 2) + C12 * ((T2 + 460) ^ 3) + C13 * LOG(T2 + 460) 

pws2 = EXP(CON2) 

pw2 = HR * pws2 

w2 = .62198 * pw2 / (14.7 - pw2) 

'"INPUT PARAMETERS"' 

BI1 = 1 

BI2 = .1 

' "PLEASE INPUT STEP SIZE H "; H for the fin calculation' 

H = .1 

'INPUT "PLEASE INPUT DIMENSION OF Y AND F  ND "; ND for fin 

calculation' 

ND = 11 

'INPUT "PLEASE INPUT NUMBER OF STEPS N "; N for fin calculation' 

N = 11 

' "N SHOULD BE LESS THAN OR EQUAL TO DIMENSION OF Y AND F"' 

' INPUT CONVERGENCE CRITERION EPS "; EPS' 

EDGE = H * N + 1.5 P 

RINT "EDGE =", EDGE 

' PARAMETERS' 

'INPUT "PLEASE INPUT P"; P' 
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Appendix A: (Continued) 

P = .25 

'INPUT "PLEASE INPUT THETA";THETA 

THETA = 3.1416 / 4 

'INPUT "PLEASE INPUT STEP SIZE H1 "; H1 for wall calculation' 

H1 = .05 

'INPUT "PLEASE INPUT DIMENSION OF Y1 AND F1  ND1 "; ND1 for wall' 

ND1 = 11 

'INPUT "PLEASE INPUT NUMBER OF STEPS N1 "; N1 for wall' 

N1 = 11 

'PRINT "N1 SHOULD BE LESS THAN OR EQUAL TO DIMENSION OF Y1 

AND F1"' 

'INPUT "PLEASE INPUT K' 

K = 1 

BI = BI2 * P / K 

B = (BI / ((P ^ 2))) 

EDGE1 = H1 * N1 + 1 

PRINT "EDGE1 =", EDGE1 

'SET INITIAL CONDITIONS' 

100 INPUT "INITIAL GUESS `FOR Y1(1)= A1"; A1 

PRINT A1 

IF (A1 < -1000) THEN 

GOTO 100 

ELSE 

END IF 

40 Y1(1) = A1 

'BOUNDARY CONDITION' 

F1(1) = 1 + (Y1(1) / BI1) 
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Appendix A: (Continued) 

X1(1) = 1 

X(1) = 1.5 

FOR IT = 1 TO 2 

FOR I = 1 TO (N1 - 1) 

RK11 = H1 * Y1(1) 

RK21 = H1 * (Y1(I) + (RK11 / 2)) 

RK31 = H1 * (Y1(I) + (RK21 / 2)) 

RK41 = H1 * (Y1(I) + RK31) 

F1(I + 1) = F1(I) + (RK11 + 2 * RK21 + 2 * RK31 + RK41) / 6 

RK1P1 = H1 * 0 

RK2P1 = H1 * ((RK1P1 / 2) / (H1 / 2)) 

RK3P1 = H1 * ((RK2P1 / 2) / (H1 / 2)) 

RK4P1 = H1 * ((RK3P1) / (H1)) 

Y1(I + 1) = Y1(I) + (RK1P1 + 2 * RK2P1 + 2 * RK3P1 + RK4P1) / 6 

X1(I + 1) = X1(I) + H1 

NEXT I 

'to calculate Rb at base' 

 I = N1 

T(I) = (T1 - T2) * F1(I) + T2 

CON(I) = C8 / (T(I) + 460) + C9 + C10 * (T(I) + 460) + C11 * 

((T(I) + 460) ^ 2) + C12 * ((T(I) + 460) ^ 3) + C13 * LOG((T(I) + 

460)) 

pws(I) = EXP(CON(I)) 

pw(I) = HR * pws(I) 

w(I) = .62198 * pw(I) / (14.7 - pw(I)) 

R(I) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(I)) / 

((F1(I) * cpa)))) 
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Appendix A: (Continued) 

F(1) = F1(N1) 

'BOUNDARY CONDITION' 

Y(1) = (Y1(N1) + (BI2 / R(N1)) * (1 - P) * F1(N1)) / (K * P) 

FOR I = 1 TO (N - 1) 

RK1 = H * Y(I) 

RK2 = H * (Y(I) + (RK1 / 2)) 

RK3 = H * (Y(I) + (RK2 / 2)) 

RK4 = H * (Y(I) + RK3) 

F(I + 1) = F(I) + (RK1 + 2 * RK2 + 2 * RK3 + RK4) / 6 

T(I) = (T1 - T2) * F(I) + T2 

CON(I) = C8 / (T(I) + 460) + C9 + C10 * (T(I) + 460) + C11 * 

((T(I) + 460) ^ 2) + C12 * ((T(I) + 460) ^ 3) + C13 * LOG((T(I) + 

460)) 

pws(I) = EXP(CON(I)) 

pw(I) = HR * pws(I) 

w(I) = .62198 * pw(I) / (14.7 - pw(I)) 

      R(I) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(I)) / (F(I) 

* cpa))) 

      RK1P = H * (B * COS(THETA) * F(I) / R(I)) 

T(I) = (T1 - T2) * (F(I) + RK1 / 2) + T2 

CON(I) = C8 / (T(I) + 460) + C9 + C10 * (T(I) + 460) + C11 * 

((T(I) + 460) ^ 2) + C12 * ((T(I) + 460) ^ 3) + C13 * LOG((T(I) + 

460)) 

pws(I) = EXP(CON(I)) 

pw(I) = HR * pws(I) 

w(I) = .62198 * pw(I) / (14.7 - pw(I)) 
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Appendix A: (Continued) 

R(I) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(I)) / ((F(I) 

+ RK1 / 2) * cpa))) 

RK2P = H * (B * COS(THETA) * (F(I) + RK1 / 2) / R(I) + (RK1P / 2) 

/ (H / 2)) 

T(I) = (T1 - T2) * (F(I) + RK2 / 2) + T2 

CON(I) = C8 / (T(I) + 460) + C9 + C10 * (T(I) + 460) + C11 * 

((T(I) + 460) ^ 2) + C12 * ((T(I) + 460) ^ 3) + C13 * LOG((T(I) + 

460)) 

pws(I) = EXP(CON(I)) 

pw(I) = HR * pws(I) 

w(I) = .62198 * pw(I) / (14.7 - pw(I)) 

R(I) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(I)) / ((F(I) 

+ RK2 / 2) * cpa))) 

RK3P = H * (B * COS(THETA) * (F(I) + RK2 / 2) / R(I) + (RK2P / 2) 

/ (H / 2)) 

CON(I) = C8 / (T(I) + 460) + C9 + C10 * (T(I) + 460) + C11 * 

((T(I) + 460) ^ 2) + C12 * ((T(I) + 460) ^ 3) + C13 * LOG((T(I) + 

460)) 

pws(I) = EXP(CON(I)) 

pw(I) = HR * pws(I) 

w(I) = .62198 * pw(I) / (14.7 - pw(I)) 

R(I) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(I)) / ((F(I) 

+ RK3) * cpa))) 

RK4P = H * (B * cos(THETA) * (F(I) + RK3) / R(I) + (RK3P) / (H)) 

Y(I + 1) = Y(I) + (RK1P + 2 * RK2P + 2 * RK3P + RK4P) / 6 

X(I + 1) = X(I) + H 

NEXT I 
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Appendix A: (Continued) 

IF (IT = 1) THEN 

S1 = Y(N) 

DA1 = A1 / 50000 

A1 = A1 + DA1 

Y1(1) = A1 

ELSE 

S2 = Y(N) 

END IF 

NEXT IT 

T(N) = (T1 - T2) * (F(N)) + T2 

CON(N) = C8 / (T(N) + 460) + C9 + C10 * (T(N) + 460) + C11 * 

((T(N) + 460) ^ 2) + C12 * ((T(N) + 460) ^ 3) + C13 * LOG((T(N) + 

460)) 

pws(N) = EXP(CON(N)) 

pw(N) = HR * pws(N) 

w(N) = .62198 * pw(N) / (14.7 - pw(N)) 

R(N) = 1 / (1 + (1 * hfg * (1 / (T2 - T1)) * (w2 - w(N)) / 

((F(N)) * cpa))) 

'BOUNDARY CONDITION' 

YEND = -(BI * F(N)) / (R(N) * P) 

PRINT "YEND=", YEND 

S12 = (S2 - S1) / DA1 

IF (S12 = 0) THEN 

GOTO 50 

ELSE 

END IF 

A1 = Y1(1) + (YEND - Y(N)) / S12 
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Appendix A: (Continued)  

IF (A1 < -1000) THEN 

PRINT "TRY ANOTHER GUESS FOR A1" 

GOTO 100 

ELSE 

END IF 

IF (ABS(Z - A1) < EPS) THEN 

GOTO 50 

ELSE 

END IF 

Z = A1 

GOTO 40 

50 X(1) = 1.5 

PRINT "T1="; T1; "T2="; T2; "HR="; HR 

FOR I = 1 TO N1 STEP 1 

PRINT I, X1(I), Y1(I), F1(I) 

NEXT I 

FOR I = 1 TO N STEP 2 

PRINT I, X(I), Y(I), F(I) 

NEXT I 

END  
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Appendix B: FIDAP Code for Analysis of Heat Transfer by Jet Impingement 

B.1 Using Copper "Cu"at Re = 100 
 

FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 

1, MLOO = 1, 

MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, TOLE 

= 0.0001 ) 

/POINTS 

POINT( ADD, COOR, X = 0, Y = 0 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0.3 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0.3 ) 

POINT( ADD, COOR, X = -5.0653, Y = 4.2497 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.01 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.21 ) 

POINT( ADD, COOR, X = -4.9239, Y = 4.3911 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0.3 ) 

POINT( ADD, COOR, X = 0, Y = 6.21 ) 

POINT( ADD, COOR, X = 0, Y = 0.3 ) 

/LINES 

POINT ( SELE, ID ) 

1 6 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

6 8 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 
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Appendix B: (Continued) 
 

8 9 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

9 11 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

11 

2 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

11 

6  

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

6 

3  

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

12  

9 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

12  

13 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  
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Appendix B: (Continued) 
 
11 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

1 

CURVE( ADD, LINE ) 

/SURFACE 

POINT ( SELE, ID ) 

1 

4 

12 

9 

SURFACE ( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 

CURVE( SELE,ID = 1 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 2 ) 

MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 3 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 4 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 7 ) 
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Appendix B: (Continued) 
 
MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 8 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 9 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 10 ) 

MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 11 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 12 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 13 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 1.1, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 14 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 15 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

/LOOP 1 

CURVE( SELE, ID ) 

1 

9 

14 

15 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 2 

CURVE( SELE, ID ) 
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Appendix B: (Continued) 
 
14 

8 

12 

13 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 3 

CURVE( SELE, ID ) 

10 

6 

7 

8 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 4 

CURVE( SELE, ID ) 

2 

11 

10 

9 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

      /LOOP 5 

      CURVE( SELE, ID ) 

3 

4 

5 
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Appendix B: (Continued) 
 

11 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 3 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 4 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 5 ) 

MFACE( ADD ) 

// MESHING 

MFACE( SELE,ID ) 

1 

2 
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Appendix B: (Continued) 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, NOSM, ENTI = "Cu" ) 

MFACE( SELE,ID  ) 

3 

4 

5 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, ENTI ="water" ) 

/MESH MAP ELEMENT ID 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE,ID = 4 )  

MEDGE( MESH, MAP, ENTI = "inlet" ) 

MEDGE( SELE,ID = 7 ) 

MEDGE( MESH, MAP, ENTI = "outlet" ) 

MEDGE( SELE,ID = 5 )  

MEDGE( MESH, MAP, ENTI = "surf1" ) 

MEDGE( SELE,ID = 6 )  

MEDGE( MESH, MAP, ENTI = "surf2" ) 

MEDGE( SELE,ID )  

13 

15 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE,ID  ) 

1 

2 

3 

MEDGE( MESH, MAP, ENTI = "axis" ) 
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Appendix B: (Continued) 
 
MEDGE( SELE,ID = 12 )  

MEDGE( MESH, MAP, ENTI = "sides" ) 

MEDGE( SELE,ID )  

8 

9 

MEDGE( MESH, MAP, ENTI = "interface" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

/WATER PROPERTIES 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 

CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 

SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

/CU PROPERTIES 

DENSITY( SET = "Cu", CONS = 8.954  ) 

CONDUCTIVITY( SET = "Cu", CONS = 0.922562 ) 

SPECIFICHEAT( SET = "Cu", CONS = 0.0915019 ) 

ENTITY( ADD, NAME = "Cu", SOLI, PROP = "Cu" ) 

ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "inlet", PLOT ) 

ENTITY( ADD, NAME = "outlet", PLOT ) 

ENTITY( ADD, NAME = "surf1", PLOT ) 

ENTITY( ADD, NAME = "surf2", PLOT ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 

ENTITY( ADD, NAME = "axis", PLOT ) 
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Appendix B: (Continued) 
 

ENTITY( ADD, NAME = "sides", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "Cu", NATT = 

"water" ) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 

EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE, BOUN ) 

OPTIONS (ADD, UPWI ) 

UPWINDING (ADD, STRE ) 

/You can try different ones to see which one works 

RELAXATION(  ) 

  0.3, 0.3, 0.3, 0, 0.05, 0.25, 0.25 

  /0.6, 0.6, 0.6, 0, 0.3, 0.3, 0.3 

  /0.5, 0.5, 0.5, 0, 0.75, 0.75, 0.75 

BCNODE( ADD, URC, ENTI = "axis", ZERO ) 

BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 

BCNODE( ADD, UZC, ENTI = "inlet", CONS = 50 ) 

BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 

BCNODE( ADD, VELO, ENTI = "surf1", ZERO ) 

BCNODE( ADD, VELO, ENTI = "surf2", ZERO ) 

BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "Cu", ZERO ) 

/ICNODE( VELO, STOKES ) 
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Appendix B: (Continued) 
 

/PROBLEM DEFINITION 

PROBLEM( ADD, 2-D, INCO, STEA, LAMI, NONL, NEWT, MOME, ENER, 

FIXE, SING ) 

SOLUTION( ADD, S.S. = 1500, VELC = 1e-5, RESC = 1e-5 ) 

CLIPPING( ADD, MINI ) 

    0,     0,     0,     0,    37,     0 

END(  ) 

CREATE( FISO ) 

RUN( FISOLV, BACK, AT = "", TIME = "NOW", COMP ) 

 

B.2 Using Copper "Cu"at Re = 750 
 
FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 

1, MLOO = 1, 

MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, TOLE 

= 0.0001 ) 

/POINTS 

POINT( ADD, COOR, X = 0, Y = 0 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0.3 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0.3 ) 

POINT( ADD, COOR, X = -5.0653, Y = 4.2497 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.01 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.21 ) 

POINT( ADD, COOR, X = -4.9239, Y = 4.3911 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0.3 ) 
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Appendix B: (Continued) 
 
POINT( ADD, COOR, X = 0, Y = 6.21 ) 

POINT( ADD, COOR, X = 0, Y = 0.3 ) 

/LINES 

POINT ( SELE, ID ) 

1 6 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

6 8 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

8 9 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

9 11 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

11 

2 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

11 

6  

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

6 

3  

CURVE( ADD, LINE )  
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Appendix B: (Continued)  
 

POINT ( SELE, ID ) 

12  

9 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

12  

13 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

11 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

1 

CURVE( ADD, LINE ) 

/SURFACE 

POINT ( SELE, ID ) 

1 

4 

12 

9 

SURFACE ( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 

CURVE( SELE,ID = 1 ) 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 2 ) 
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Appendix B: (Continued) 
 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 3 ) 

MEDGE( ADD, SUCC, INTE = 100, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 4 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 100, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 200, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 7 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 8 ) 

MEDGE( ADD, SUCC, INTE = 200, RATI = 0, 2RAT = 0, PCEN = 0 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 10 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 11 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 12 ) 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 13 ) 

MEDGE( ADD, SUCC, INTE = 200, RATI = 1.1, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 14 ) 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 15 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 9 ) 
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Appendix B: (Continued) 
 

/LOOP 1 

CURVE( SELE, ID ) 

1 

9 

14 

15 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 2 

CURVE( SELE, ID ) 

14 

8 

12 

13 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 3 

CURVE( SELE, ID ) 

10 

6 

7 

8 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 4 

CURVE( SELE, ID ) 

2 
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11 

10 

9 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 5 

CURVE( SELE, ID ) 

3 

4 

5 

11 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 3 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 



www.manaraa.com

 

94 
 

Appendix B: (Continued) 
 

MLOOP( SELE, ID = 4 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 5 ) 

MFACE( ADD ) 

// MESHING 

MFACE( SELE,ID ) 

1 

2 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, NOSM, ENTI = "Cu" ) 

MFACE( SELE,ID  ) 

3 

4 

5 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, ENTI ="water" ) 

/MESH MAP ELEMENT ID 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE,ID = 4 )  

MEDGE( MESH, MAP, ENTI = "inlet" ) 

MEDGE( SELE,ID = 7 ) 

MEDGE( MESH, MAP, ENTI = "outlet" ) 

MEDGE( SELE,ID )  

5 

6 
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MEDGE( MESH, MAP, ENTI = "surface" ) 

MEDGE( SELE,ID )  

13 

15 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE,ID  ) 

1 

2 

3 

MEDGE( MESH, MAP, ENTI = "axis" ) 

MEDGE( SELE,ID = 12 )  

MEDGE( MESH, MAP, ENTI = "sides" ) 

MEDGE( SELE,ID )  

8 

9 

MEDGE( MESH, MAP, ENTI = "interface" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

/WATER PROPERTIES 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 

CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 

SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

/SILICON PROPERTIES 

/DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 
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/CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 

/SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 

/CU PROPERTIES 

DENSITY( SET = "Cu", CONS = 8.954  ) 

CONDUCTIVITY( SET = "Cu", CONS = 0.922562 ) 

SPECIFICHEAT( SET = "Cu", CONS = 0.0915019 ) 

ENTITY( ADD, NAME = "Cu", SOLI, PROP = "Cu" ) 

ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "inlet", PLOT ) 

ENTITY( ADD, NAME = "outlet", PLOT ) 

ENTITY( ADD, NAME = "surface", PLOT ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 

ENTITY( ADD, NAME = "axis", PLOT ) 

ENTITY( ADD, NAME = "sides", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "Cu", NATT = 

"water" ) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 

EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE, BOUN ) 

OPTIONS (ADD, UPWI ) 

UPWINDING (ADD, STRE ) 

/You can try different ones to see which one works 

RELAXATION(  ) 

  0.3, 0.3, 0.3, 0, 0.05, 0.25, 0.25 

  /0.6, 0.6, 0.6, 0, 0.3, 0.3, 0.3 
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  /0.5, 0.5, 0.5, 0, 0.75, 0.75, 0.75 

BCNODE( ADD, URC, ENTI = "axis", ZERO ) 

BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 

BCNODE( ADD, UZC, ENTI = "inlet", CONS = 50 ) 

BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 

BCNODE( ADD, VELO, ENTI = "surface", ZERO ) 

/BCNODE( ADD, VELO, ENTI = "surf2", ZERO ) 

BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "Cu", ZERO ) 

/ICNODE( VELO, STOKES ) 

/PROBLEM DEFINITION 

PROBLEM( ADD, 2-D, INCO, STEA, LAMI, NONL, NEWT, MOME, ENER, 

FIXE, SING ) 

SOLUTION( ADD, S.S. = 1500, VELC = 1e-5, RESC = 1e-5 ) 

CLIPPING( ADD, MINI ) 

    0,     0,     0,     0,    37,     0 

END(  ) 

CREATE( FISO ) 

RUN( FISOLV, BACK, AT = "", TIME = "NOW", COMP ) 

 
B.3 Using Silicon "Si"  

 
 
EXAMPLE 1 

FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, 

MEDG = 1, MLOO = 1, 
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MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, 

TOLE = 0.0001 ) 

/POINTS 

POINT( ADD, COOR, X = 0, Y = 0 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0.3 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0.3 ) 

POINT( ADD, COOR, X = -5.0653, Y = 4.2497 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.01 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.21 ) 

POINT( ADD, COOR, X = -4.9239, Y = 4.3911 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0.3 ) 

POINT( ADD, COOR, X = 0, Y = 6.21 ) 

POINT( ADD, COOR, X = 0, Y = 0.3 ) 

/LINES 

POINT ( SELE, ID ) 

1 6 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

6 8 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

8 9 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 
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9 11 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

11 

2 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

11 

6  

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

6 

3  

CURVE( ADD, LINE )  

POINT ( SELE, ID ) 

12  

9 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

12  

13 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

11 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 
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13  

1 

CURVE( ADD, LINE ) 

/SURFACE 

POINT ( SELE, ID ) 

1 

4 

12 

9 

SURFACE ( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 

CURVE( SELE,ID = 1 ) 

MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 2 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 3 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 4 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 7 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 8 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 
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CURVE( SELE,ID = 9 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 10 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 11 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 12 ) 

MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 13 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 1.1, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 14 ) 

MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 15 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

/LOOP 1 

CURVE( SELE, ID ) 

1 

9 

14 

15 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

       /LOOP 2 

       CURVE( SELE, ID ) 

14 

8 

12 
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13 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 ) 

/LOOP 3 

CURVE( SELE, ID ) 

10 

6 

7 

8 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 4 

CURVE( SELE, ID ) 

2 

11 

10 

9 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 5 

CURVE( SELE, ID ) 

3 

4 

5 

11 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  



www.manaraa.com

 

103 
 

Appendix B: (Continued) 
 
//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 3 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 4 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 5 ) 

MFACE( ADD ) 

// MESHING 

MFACE( SELE,ID ) 

1 

2 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, NOSM, ENTI = "Cu" ) 

MFACE( SELE,ID  ) 
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3 

4 

5 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, ENTI ="water" ) 

/MESH MAP ELEMENT ID 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE,ID = 4 )  

MEDGE( MESH, MAP, ENTI = "inlet" ) 

MEDGE( SELE,ID = 7 ) 

MEDGE( MESH, MAP, ENTI = "outlet" ) 

MEDGE( SELE,ID = 5 )  

MEDGE( MESH, MAP, ENTI = "surf1" ) 

MEDGE( SELE,ID = 6 )  

MEDGE( MESH, MAP, ENTI = "surf2" ) 

MEDGE( SELE,ID )  

13 

15 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE,ID  ) 

1 

2 

3 

MEDGE( MESH, MAP, ENTI = "axis" ) 

MEDGE( SELE,ID = 12 )  

MEDGE( MESH, MAP, ENTI = "sides" ) 

MEDGE( SELE,ID )  
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8 

9 

MEDGE( MESH, MAP, ENTI = "interface" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

/WATER PROPERTIES 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 

CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 

SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

/SILICON PROPERTIES 

/DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 

/CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 

/SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 

/CU PROPERTIES 

DENSITY( SET = "Cu", CONS = 8.954  ) 

CONDUCTIVITY( SET = "Cu", CONS = 0.922562 ) 

SPECIFICHEAT( SET = "Cu", CONS = 0.0915019 ) 

ENTITY( ADD, NAME = "Cu", SOLI, PROP = "Cu" ) 

ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "inlet", PLOT ) 

ENTITY( ADD, NAME = "outlet", PLOT ) 

ENTITY( ADD, NAME = "surf1", PLOT ) 

ENTITY( ADD, NAME = "surf2", PLOT ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 
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ENTITY( ADD, NAME = "axis", PLOT ) 

ENTITY( ADD, NAME = "sides", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "Cu", NATT = 

"water" ) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 

EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE, BOUN ) 

OPTIONS (ADD, UPWI ) 

UPWINDING (ADD, STRE ) 

/You can try different ones to see which one works 

RELAXATION(  ) 

  0.3, 0.3, 0.3, 0, 0.05, 0.25, 0.25 

  /0.6, 0.6, 0.6, 0, 0.3, 0.3, 0.3 

  /0.5, 0.5, 0.5, 0, 0.75, 0.75, 0.75 

BCNODE( ADD, URC, ENTI = "axis", ZERO ) 

BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 

BCNODE( ADD, UZC, ENTI = "inlet", CONS = 13.35341 ) 

BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 

BCNODE( ADD, VELO, ENTI = "surf1", ZERO ) 

BCNODE( ADD, VELO, ENTI = "surf2", ZERO ) 

BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 2.9855 ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "Cu", ZERO ) 
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/ICNODE( VELO, STOKES ) 

/PROBLEM DEFINITION 

PROBLEM( ADD, 2-D, INCO, STEA, LAMI, NONL, NEWT, MOME, ENER, 

FIXE, SING ) 

SOLUTION( ADD, S.S. = 1500, VELC = 1e-5, RESC = 1e-5 ) 

CLIPPING( ADD, MINI ) 

    0,     0,     0,     0,    37,     0 

END(  ) 

CREATE( FISO ) 

RUN( FISOLV, BACK, AT = "", TIME = "NOW", COMP ) 

 

B.4 Using Titanium "CuNi" 
 
EXAMPLE 1 

FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 

1, MLOO = 1, 

MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, TOLE 

= 0.0001 ) 

/POINTS 

POINT( ADD, COOR, X = 0, Y = 0 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0 ) 

POINT( ADD, COOR, X = -9.315, Y = 0.3 ) 

POINT( ADD, COOR, X = -3.3125, Y = 0.3 ) 

POINT( ADD, COOR, X = -5.0653, Y = 4.2497 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.01 ) 

POINT( ADD, COOR, X = -9.315, Y = 6.21 ) 
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POINT( ADD, COOR, X = -4.9239, Y = 4.3911 ) 

POINT( ADD, COOR, X = -3.1125, Y = 0.3 ) 

POINT( ADD, COOR, X = 0, Y = 6.21 ) 

POINT( ADD, COOR, X = 0, Y = 0.3 ) 

/LINES 

POINT ( SELE, ID ) 

1 6 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

6 8 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

8 9 

CURVE( ADD, LINE ) 

POINT( SELE, ID  ) 

9 11 

CURVE( ADD, ARC ) 

POINT ( SELE, ID ) 

11 

2 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

11 

6  

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

6 
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3  

CURVE( ADD, LINE )  

POINT ( SELE, ID ) 

12  

9 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

12  

 
13 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

11 

CURVE( ADD, LINE ) 

POINT ( SELE, ID ) 

13  

1 

CURVE( ADD, LINE ) 

/SURFACE 

POINT ( SELE, ID ) 

1 

4 

12 

9 

SURFACE ( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 
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CURVE( SELE,ID = 1 ) 

MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 2 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 3 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 4 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 80, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 7 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 8 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 9 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 10 ) 

MEDGE( ADD, SUCC, INTE = 8, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 11 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 12 ) 

MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 13 ) 

MEDGE( ADD, SUCC, INTE = 140, RATI = 1.1, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 14 ) 
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MEDGE( ADD, SUCC, INTE = 40, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE,ID = 15 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

/LOOP 1 

CURVE( SELE, ID ) 

1 

9 

14 

15 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, 

EDG4 = 1 )  

/LOOP 2 

CURVE( SELE, ID ) 

14 

8 

12 

13 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 3 

CURVE( SELE, ID ) 

10 

6 

7 

8 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  
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/LOOP 4 

CURVE( SELE, ID ) 

2 

11 

10 

 
9 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

/LOOP 5 

CURVE( SELE, ID ) 

3 

4 

5 

11 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 

1 )  

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 3 ) 
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MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 4 ) 

MFACE( ADD ) 

//ADDING MESH FACE 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 5 ) 

MFACE( ADD ) 

// MESHING 

MFACE( SELE,ID ) 

1 

2 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, NOSM, ENTI = "CuNi" ) 

MFACE( SELE,ID  ) 

3 

4 

5 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, ENTI ="water" ) 

/MESH MAP ELEMENT ID 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE,ID = 4 )  

MEDGE( MESH, MAP, ENTI = "inlet" ) 

MEDGE( SELE,ID = 7 ) 

MEDGE( MESH, MAP, ENTI = "outlet" ) 
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MEDGE( SELE,ID = 5 )  

MEDGE( MESH, MAP, ENTI = "surf1" ) 

MEDGE( SELE,ID = 6 )  

MEDGE( MESH, MAP, ENTI = "surf2" ) 

MEDGE( SELE,ID )  

13 

15 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE,ID  ) 

1 

2 

3 

MEDGE( MESH, MAP, ENTI = "axis" ) 

MEDGE( SELE,ID = 12 )  

MEDGE( MESH, MAP, ENTI = "sides" ) 

MEDGE( SELE,ID )  

8 

9 

MEDGE( MESH, MAP, ENTI = "interface" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

/WATER PROPERTIES 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 

CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 
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Appendix B: (Continued) 
 
SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

/Constantan (CuNi)PROPERTIES 

DENSITY( ADD, SET = "CuNi", CONS = 8.9 ) 

CONDUCTIVITY( ADD, SET = "CuNi", CONS = 0.04657497 ) 

SPECIFICHEAT( ADD, SET = "CuNi", CONS = 0.39 ) 

/SILICON PROPERTIES 

/DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 

/CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 

/SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 

/CU PROPERTIES 

/DENSITY( SET = "Cu", CONS = 8.954  ) 

/CONDUCTIVITY( SET = "Cu", CONS = 0.922562 ) 

/SPECIFICHEAT( SET = "Cu", CONS = 0.0915019 ) 

ENTITY( ADD, NAME = "CuNi", SOLI, PROP = "CuNi" ) 

ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "inlet", PLOT ) 

ENTITY( ADD, NAME = "outlet", PLOT ) 

ENTITY( ADD, NAME = "surf1", PLOT ) 

ENTITY( ADD, NAME = "surf2", PLOT ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 

ENTITY( ADD, NAME = "axis", PLOT ) 

ENTITY( ADD, NAME = "sides", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "CuNi", NATT = 

"water" ) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 
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Appendix B: (Continued) 
 
EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE, BOUN ) 

OPTIONS (ADD, UPWI ) 

UPWINDING (ADD, STRE ) 

/You can try different ones to see which one works 

RELAXATION(  ) 

  0.3, 0.3, 0.3, 0, 0.05, 0.25, 0.25 

  /0.6, 0.6, 0.6, 0, 0.3, 0.3, 0.3 

  /0.5, 0.5, 0.5, 0, 0.75, 0.75, 0.75 

BCNODE( ADD, URC, ENTI = "axis", ZERO ) 

BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 

BCNODE( ADD, UZC, ENTI = "inlet", CONS = 13.35341 ) 

BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 

BCNODE( ADD, VELO, ENTI = "surf1", ZERO ) 

BCNODE( ADD, VELO, ENTI = "surf2", ZERO ) 

BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 2.9855 ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "CuNi", ZERO ) 

/ICNODE( VELO, STOKES ) 

/PROBLEM DEFINITION 

PROBLEM( ADD, 2-D, INCO, STEA, LAMI, NONL, NEWT, MOME, 

ENER, FIXE, SING ) 

SOLUTION( ADD, S.S. = 1500, VELC = 1e-5, RESC = 1e-5 ) 

CLIPPING( ADD, MINI ) 

    0,     0,     0,     0,    37,     0 
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Appendix B: (Continued) 
 
END(  ) 

CREATE( FISO ) 

RUN( FISOLV, BACK, AT = "", TIME = "NOW", COMP ) 
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